Khatra Adibasi Mahavidyalaya Khatra, Bankura, West Bengal

Department of Mathematics

> Syllabus Module (2022-2023)
\square

Syllabus Module

Dept. Of Mathematics

Session: 2022-2023
Khatra Adibasi Mahavidyalaya

Semester -1(New)					
Course Code	Course Title	Course Topics	Teachers	No. of lectures per topic	Total no. of lectures
$\begin{aligned} & \hline \text { SH/MTH/ } \\ & \text { 101/C-1 } \end{aligned}$	Calculus, Vector Analysis	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{a x+b \sin x}, e^{a x+b \cos x},(a x+$ $b)^{n} \sin x,(a x+b)^{n} \cos x$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG	15	
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin ^{n} x d x, \int \cos ^{n} x d x$, $\int \tan ^{n} x d x$, $\int \sec ^{n} x d x \int(\log x)^{n} d x$, $\int \sin ^{m} x \cos ^{n} x d x$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution.	CDG	15	

		Techniques of sketching conics.			
		Unit 3 Reflection properties of conics, Transformation of axes and second degree equations, Invariants, classification of conics using the discriminant, Pair of straight lines, polar equations of straight lines, circles and conics. Spheres, Cone, Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Tangent, Normal, Enveloping Cone and Cylinder, Generating lines, classification of quadrics, Transformation of axes in space and general equation of second degree.	RB	15	
		Unit 4 Product of three or more vectors, Applications in Geometry, introduction to vector functions of one independent variable, operations with vectorvalued functions of one independent variable, limits and continuity of vector functions, differentiation and integration of vector functions of one independent variable.	CDG	15	60
SH/MTH/	Algebra	Unit 1	AI	15	

102/C-2		Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Location of roots: Descartes rule of signs, Sturm's theorem, Cubic and biquadratic equation, Cardon's, Ferrai's and Euler's method. Inequality: The inequality involving $A M \geq G M \geq H M$, Cauchy-Schwartz inequality.			
		Unit 2 Equivalence relations, partial order relation, poset, linear order relation. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Prime numbers and their properties, Euclid's theorem. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic	AI	15	
		Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation $A x=b$, solution sets of linear systems,	MN	15	

		applications of linear systems, linear independence			
		Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspace of $\mathbb{R} n$, dimension of subspaces of $\mathbb{R} n$, Geometric significance of subspaces. Rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.	MN	15	60
$\begin{array}{\|l\|} \hline \text { SH/MTH/ } \\ \text { 103/GE-1 } \end{array}$	Calculus, Vector Analysis	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{a x+b s i n x}, e^{a x+b \cos x},(a x+$ $b)^{n} \sin x,(a x+b)^{n} \cos x$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	AI	15	
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin ^{n} x d x, \int \cos ^{n} x d x$,	AI	15	

		$\int \tan ^{n} x d x$, $\int \sec ^{n} x d x \int(\log x)^{n} d x$, $\int \sin ^{m} x \cos ^{n} x d x$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.			
		Unit 3 Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.	AI	15	
		Unit 4 Product of three or more vectors, Applications in Geometry, introduction to vector functions of one independent variable, operations with vectorvalued functions of one independent variable, limits and continuity of vector functions, differentiation and integration of vector functions of one independent variable.	AI	15	60

SEMESTER - II(New)

Course Code	Course Title	Course Topics	Teachers	No. of lectures per topic	Total no. of lectures
$\begin{aligned} & \text { SH/MTH/ } \\ & \text { 201/C-3 } \end{aligned}$	Real Analysis	Unit 1 Review of Algebraic and Order Properties of R, ε neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R , Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of BolzanoWeierstrass theorem for sets, compact sets in R, HeineBorel Theorem.	AI	15	
		Unit 2 Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone	RB	15	

		Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.		
	Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.	RB	20	$\mathbf{5 0}$
SH/MTH/	Group Theory-	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non- homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.	CDG	$\mathbf{1 5}$
Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients,	$\mathbf{C D G}$			

		Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions.			
		Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	CDG	15	
		Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	CDG	15	60
$\begin{aligned} & \text { SH/MTH/ } \\ & \text { 203/GE-2 } \end{aligned}$	Algebra	Unit 1 Review of Algebraic and Order Properties of R, ε neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of BolzanoWeierstrass theorem for sets, compact sets in R, Heine-	MN	15	

		Borel Theorem. Unit 2 Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.	MN	15	
		Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.	MN	20	60
The tentative dates of Internal Assessment are in mid week of May 2023.					
SEMESTER - III					
Course Code	Course Title	Course Topics	Teachers	No. of lectures per topic	Total no. of lectures
$\begin{aligned} & \text { SH/MTH/ } \\ & 301 / \mathrm{C}-5 \end{aligned}$	Theory of Real Functions \& Introduction to Metric Space	Unit 1 Limits of functions ($\varepsilon-\delta$ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion	CDG	15	

		for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem.			
		Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials.	CDG	15	
		Unit 3 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $\ln (1+x), 1 / a x+b$. Application of Taylor's theorem to inequalities.	CDG	15	
		Unit 4 Metric spaces: Definition and	RB	15	60

		examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces.			
$\begin{aligned} & \text { SH/MTH/ } \\ & 302 / \mathrm{C}-6 \end{aligned}$	Group TheoryI	Unit 1 Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups.	MN	15	
		Unit 2 Subgroups and examples of subgroups, centralizer, normalizer, centre of a group, product of two subgroups.	MN	15	
		Unit 3 Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem.	MN	15	
		Unit 4 External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups.	MN	15	
		Unit 5 Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism	MN	15	75

		theorems.			
$\begin{aligned} & \text { SH/MTH } \\ & / 303 / \mathrm{C}-7 \end{aligned}$	Numerical Methods Numerical Methods Lab	Unit 1 Algorithms. Convergence. Errors: Relative, Absolute Round off. Truncation.	AI	15	
		Unit 2 Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, NewtonRaphson method. Rate of convergence of these methods.	AI	15	
		Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU Decomposition	AI	15	
		Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory forward and backward difference interpolation. Numerical differentiation: Methods based on interpolations, methods based on finite differences.	AI	15	
		Unit 5 Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's $1 / 3$ rd rule, Simpsons $3 / 8$ th rule, Weddle's rule, Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's $1 / 3$ rd rule, Gauss quadrature	AI	15	75

		formula. The algebraic eigenvalue problem: Power method. Approximation: Least square polynomial approximation.		
SH/MTH/	Algebra (GET2)	Unit 1 Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $A M \geq$ GM \geq HM, Cauchy-Schwartz inequality.	CDG	$\mathbf{1 5}$
	Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well- ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.	CDG	15	
Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear	RB			

		independence.			
		Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. CayleyHamilton theorem and its use in finding the inverse of a matrix	RB	15	60
SH/MTH / 305/SEC-1	Programming using C (New)		AI	50	50

The tentative dates of the Internal Assessment are in November 2022.

SEMESTER - IV					
Course Code	Course Title	Course Topics	Teachers	No. of lectures per topic	Total no. of lectures
SH/MTH	Riemann Integration and Series of Functons	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the Rienann integra; definition and integrability of piecewise continuous and monotone	MN	15	

		functions. Intermediate Value theorem for Integrals. Fundamental theorem of Integral Calculus.		
		Unit 2 Improper integrals. Convergence of Beta and Gamma functions.	$\mathbf{M N}$	$\mathbf{1 5}$
	Unit 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test.	$\mathbf{M N}$	$\mathbf{1 5}$	
Multivariate				

9	Calculus	Functions of several variables, limit and continuity of functions of two or more variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems			
		Unit 2 Double integration over rectangular region, double integration over nonrectangular region, Double integrals in polar coordinates, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co-ordinates. Change of variables in double integrals and triple integrals	AI	15	
		Unit 3 Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path.	AI	15	
		Unit 4 Green's theorem, surface integrals, integrals over	AI	15	60

		parametrically defined surfaces. Stoke's theorem, The Divergence theorem.			
$\begin{aligned} & \hline \text { SH/MTH } \\ & / 403 / \mathrm{C}-10 \end{aligned}$	Ring Theory and Linear Algebra-I	Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	RB	15	
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.	RB	15	
		Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	RB	15	
		Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.	RB	15	60
$\begin{aligned} & \hline \text { SH/MTH } \\ & \text { /404/GE-4 } \end{aligned}$	Differential Equations and Vector Calculus (GET4)	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for	CDG	15	

		homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non- homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.		
	Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions.	CDG	$\mathbf{1 5}$	
SH/MTH				

		isomorphism of graphs. Unit 2 Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,	RB	15	
		Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall al gorithm.	RB	20	50

The tentative dates of Internal Assessment are in May 2023.

SEMESTER - V					
Course Code	Course Title	Course Topics	Teachers	No. of lectures per topic	Total no. of lectures
SH/MTH /	Partial				
Differential					
	Equations and Applications	Unit 1 Partial Differential Equations - Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving first order partial differential equations.	RB	$\mathbf{1 5}$	

		Unit 2 Derivation of Heat equation, Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order Linear Equations to canonical forms.	RB	15	
		Unit 3 The Cauchy problem, Cauchy-Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi-Infinite String with a fixed end, Semi-Infinite String with a Free end. Equations with non-homogeneous boundary conditions. NonHomogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String Problem. Solving the Heat Conduction problem	RB	15	
		Unit 4 Central force. Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.	AI	15	60
$\begin{aligned} & \hline \mathrm{SH} / \mathrm{MTH} / \\ & 502 / \mathrm{C}-12 \end{aligned}$	Group Theory - II	Unit 1 Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.	MN	15	

		Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.	MN	15	
		Unit 3 Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.	MN	15	
		Unit 4 Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn , p-groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for $n \geq 5$, non-simplicity tests.	MN	15	60
SH/MTH / 503/DSE-1	Linear Programming (DSE T1)	Unit 1 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison.	CDG	15	
		Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation,	CDG	15	

		northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.			
		Unit 3 Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	CDG	20	50
$\begin{aligned} & \hline \text { SH/MTH / } \\ & 504 / \text { DSE- } \\ & 2 \end{aligned}$	Probability and Statistics (DSE T4)	Unit 1 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential.	AI	15	
		Unit 2 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional	AI	15	

		expectations, independent random variables, bivariate normal distribution, correlation coefficient, joint moment generating function (jmgf) and calculation of covariance (from jmgf), linear regression for two variables.			
		Unit 3 Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers. Central Limit theorem for independent and identically distributed random variables with finite variance, Markov Chains, ChapmanKolmogorov equations, classification of states.	AI	15	
		Unit 4 Random Samples, Sampling Distributions, Estimation of parameters, Testing of hypothesis.	AI	15	60

The tentative dates of Internal Assessment arte in May 2023.

SEMESTER - VI

Course Code	Course Title	Course Topics	Teachers	No. of lectures per topic	Total no. of lectures
SH/MTH / 601/C-13	Metric Spaces and Complex Analysis	Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric Spaces, Cantor's theorem.	RB	15	
	Unit 2 Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity.	RB	$\mathbf{1 5}$		

| | Connectedness, connected
 subsets of R.
 Compactness: Sequential
 compactness, Heine-Borel
 property, Totally bounded
 spaces, finite intersection
 property, and continuous
 functions on compact sets.
 Homeomorphism. Contraction
 mappings. Banach's Fixed
 point Theorem and its
 application to ordinary
 differential equation.
 Unit 3
 Limits, Limits involving the
 point at infinity, continuity.
 Properties of complex
 numbers, regions in the
 complex plane, functions of
 complex variable, mappings.
 Derivatives, differentiation
 formulas, Cauchy-Riemann
 equations, sufficient
 conditions for differentiability. RB | | |
| :--- | :--- | :--- | :--- | :--- |
| Unit 4
 Analytic functions, examples
 of analytic functions,
 exponential function,
 Logarithmic function,
 trigonometric function,
 derivatives of functions, and
 definite integrals of functions.
 Contours, Contour integrals
 and its examples, upper
 bounds for moduli of contour
 integrals. Cauchy- Goursat
 theorem, Cauchy integral
 formula. | $\mathbf{R B}$ | | |
| Unit 5
 Liouville's theorem and the
 fundamental theorem of
 algebra. Convergence of
 sequences and series, Taylor
 series and its examples. | RB | | |

		Unit 6 Laurent series and its examples, absolute and uniform convergence of power series.	RB	15
602/C-14				
	Ring Theory and Linear Algebra II	Unit 1 Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, and unique factorization in Z [x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains.	CDG	$\mathbf{1 5}$
Unit 2 Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley- Hamilton theorem, the minimal polynomial for a linear operator, canonical forms.	CDG	$\mathbf{1 5}$		
Unit 3 Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least Squares Approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem.	CDG	$\mathbf{2 0}$	50	

$\begin{array}{\|l\|} \hline \text { SH/MTH / } \\ \text { 603/DSE-3 } \end{array}$	Number Theory (DSE T7)	Unit 1 Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem, Fermat's Little theorem, Wilson's theorem.	MN	15	
		Unit 2 Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi - function, Euler's theorem, reduced set of residues. some properties of Euler's phi-function.	MN	15	
		Unit 3 Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli. Public key encryption, RSA encryption and decryption, the equation $x 2+y 2=z 2$, Fermat's Last theorem.	MN	20	50
SH/MTH/ 604/ DSE- 4	Project Work		AI		

The tentative dates of Internal Assessment are in May 2023.

